
SANDxxxx-xxxx

Unlimited Release

Printed May 2009

OVIS 2.0.3 User’s Guide

J. Brandt

Sandia National Laboratories

M.S. 9152, P.O. Box 969

Livermore, CA 94551, U.S.A.

brandt@sandia.gov

A. Gentile

Sandia National Laboratories

M.S. 9152, P.O. Box 969

Livermore, CA 94551, U.S.A.

gentile@sandia.gov

J. Mayo

Sandia National Laboratories

M.S. 9159, P.O. Box 969

Livermore, CA 94551, U.S.A.

jmayo@sandia.gov

P. Pébay

Sandia National Laboratories

M.S. 9159, P.O. Box 969

Livermore, CA 94551, U.S.A.

pppebay@sandia.gov

D. Roe

Sandia National Laboratories

M.S. 9152, P.O. Box 969

Livermore, CA 94551, U.S.A.

dcroe@sandia.gov

D. Thompson

Sandia National Laboratories

M.S. 9152, P.O. Box 969

Livermore, CA 94551, U.S.A.

dcthomp@sandia.gov

M. Wong

Sandia National Laboratories

M.S. 9152, P.O. Box 969

Livermore, CA 94551, U.S.A.

mhwong@sandia.gov

Abstract

This document1 describes how to obtain, install, use, and enjoy a better life with OVIS

version 2.0.

1Last Revision:July 13, 2009

3



Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1 Supporting Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 OVIS Install . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 MySQL Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4 PostgreSQL Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.5 Additional General System Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 OVIS Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.1 OVIS Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2 General Running OVIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.1 XML file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.2 Database Effector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.3 Data Samplers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5 Haruspices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.2 Haruspex Output Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5.3 Example: Multi-Correlative Haruspex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

6 Baron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

6.1 Cluster and Database Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

6.2 Adding Views . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

6.3 Rotating, Panning, and Zooming the 3D View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

6.4 Metric Drop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

6.5 Setting the colors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

6.6 Search bar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6.7 Haruspices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6.8 Time Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

6.9 Haruspex Requests View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

6.10 Saving State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

7 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

7.1 Whitney Example Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

7.2 Localhost Demo Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

8 Additional Notes and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

8.1 Miscellany . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

8.2 Multiple Shepherds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4



Figures

1 Excerpt from the Whitney XML file pertaining to the rack. . . . . . . . . . . . . . . . . . . . 18

2 Excerpt from the Whitney XML file pertaining to the node. . . . . . . . . . . . . . . . . . . 18

3 Excerpts from the Whitney XML file pertaining to the instances, associations, and

addresses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4 Multicore display and assocation specification. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5 Excerpt from the Whitney-Terascala XML file with the association information for

the Terascala storage rack. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

6 Physical display of the compute nodes with storage . . . . . . . . . . . . . . . . . . . . . . . . . 24

7 Excerpt from the lmsensors sampler illustrating specification of metric name, stride,

data type etc. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

8 Excerpts from the Whitney-Terascala XML file with partial specification of the

remote samplers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

9 Excerpt fromWhitney-Terascala XML file showing the metric node mapswhich

associate remote sampler metric numbering and the corresponding components. . . 29

10 Excerpt from the multicore processor XML file showing the metric node map

which associates sampler metric numbering and the corresponding components.

This case contains both node and core mappings. . . . . . . . . . . . . . . . . . . . . . . . . . . 30

11 Red Storm Multicorrelative monitor analysis model drop . . . . . . . . . . . . . . . . . . . . . 37

12 Details of the analysis output in the previous figure . . . . . . . . . . . . . . . . . . . . . . . . . 38

13 Overview of the elements of the Baron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

14 Bookmark Editor (left) and Server Connection (right) windows. . . . . . . . . . . . . . . . 43

15 Options for instantiating a new pane. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

16 The color tab, where the color legend can be set. . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

17 Descriptive learn Analysis pane where the metric, components, and time range for

analysis are specified . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

18 Descriptive monitor Analysis pane (left) and associated Model drop. . . . . . . . . . . . 47

19 The user interactive time widget allows the user to scroll through time in the phys-

ical display. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

20 The Time tab, which allows the user to set the time; choose to play through time;

and set the fade period. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

21 The Baron Requests view for examining previous analyses . . . . . . . . . . . . . . . . . . . 52

22 Investigatory analysis on the Whitney data set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

23 Raw metric values on the physical display pane. . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

24 Descriptive learn (left) and monitor (right) Analyses panes. . . . . . . . . . . . . . . . . . . . 58

25 Descriptive monitorModel drop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

26 Multicorrelative learn (left) and monitor (right) Analyses panes. . . . . . . . . . . . . . . . 60

27 Evinced data compared to the calculated model for the Multicorrelative Analysis

on the two metric previously studied as single metrics in the Descriptive Analyses. 61

28 Multicorrelative Analysis Model drops. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

29 Displays from the localhost demo files. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5



6



1 Introduction

This document is the user’s guide for OVIS version 2.0.

The OVIS project [5] targets scalable, real-time analysis of very large data sets. We characterize

the behaviors of elements and aggregations of elements (e.g., across space and time) in data sets

in order to detect anomalous behaviors. We are particularly interested in determining anomalous

behaviors that can be used as advance indicators of significant events of which notification can be

made or upon which action can be taken or invoked.

The OVIS open source tool (BSD license) is available for download at ovis.ca.sandia.gov.

While we intend for it to support a variety of application domains, the OVIS tool was initially

developed for, and continues to be primarily tuned for, the investigation of High Performance

Compute (HPC) cluster system health. In this application it is intended to be both a system admin-

istrator tool for monitoring and a system engineer tool for exploring the system state in depth.

OVIS 2.0 provides a variety of statistical tools for examining the behavior of elements in a cluster

(e.g., nodes, racks) and associated resources (e.g., storage appliances and network switches). It

calculates and reports model values and outliers relative to those models. Additionally, it provides

an interactive 3D physical view in which the cluster elements can be colored by raw element

values (e.g., temperatures, memory errors) or by the comparison of those values to a given model.

The analysis tools and the visual display allow the user to easily determine abnormal or outlier

behaviors.

The OVIS project envisions the OVIS tool, when applied to compute cluster monitoring, to be

used in conjunction with the scheduler or resource manager in order to enable intelligent resource

utilization [2, 3]. For example, nodes that are deemed less healthy, that is, nodes that exhibit outlier

behavior in some variable, or set of variables, that has shown to be correlated with future failure,

can be discovered and assigned to shorter duration or less important jobs. Further, applications

with fault-tolerant capabilities can invoke those mechanisms on demand, based upon notification

of a node exhibiting impending failure conditions, rather than performing such mechanisms (e.g.

checkpointing) at regular intervals unnecessarily.

More information about the OVIS project and publications describing the OVIS research in more

detail can be found at ovis.ca.sandia.gov [5].

The OVIS team can be reached at ovis-help@sandia.gov.

7



This page left intentionally blank

8



2 Installation

This section contains build instructions for the OVIS release. You will be required to obtain and

install supporting software that is not part of OVIS in a manner appropriate to your platform.

Necessary supporting software is listed below. System settings for running OVIS are also given.

2.1 Supporting Software

1. Obtain and install a C compiler, a C++ compiler, OpenGL version 1.2 or newer. These are

probably already installed on your system.

2. Obtain and install perl-DBI

3. Obtain and install a database - either MySQL or PostgreSQL will work (As of this writing

the current rpms for Fedora will work):

MySQL:

(a) Obtain and install MySQL at least version 5.0.51 (install client, server, devel, and

shared)

(b) Obtain and install MySQL-python

PostgreSQL:

(a) Obtain and install PostgreSQL at least version 8.2.9

(b) Set the following in your environment:

setenv PGSQL_HOME /usr/local/pgsql

set path=($PGSQL_HOME/bin \$path)

4. Obtain and install Qt using the latest stable version of 4.3.x. Configure with

-plugin-sql-mysql -plugin-sql-psql -debug

As of this writing the current rpm for Fedora will work (Qt version 4.3.x). You will need the

qt-devel rpm and the rpm for the appropriate database plugin as well.

5. Obtain and install CMake at least version 2.6.0

6. Obtain, build and install VTK:

(a) Obtain VTK [4]. You may use either version 5.4 or the latest CVS trunk version of the

VTK source via CVS. See the instructions to “Access the CVS source-code repository”

at http://www.vtk.org/get-software.php.

(b) If you installed Qt from source, you may need to tell ccmake where to find Qt:

setenv QTDIR /path/to/Qt-4.3.3

9



(The default location is /usr/local/Trolltech/Qt-4.3.3)

(c) Build and install VTK:

mkdir /path/to/vtkBuildDir

cd /path/to/vtkBuildDir

ccmake /path/to/vtkSourceDir

(d) Use the following settings within ccmake:

(Type ’c’ to configure to see these options)

BUILD EXAMPLES: ON (This setting is optional.)

BUILD SHARED LIBS: ON

CMAKE BUILD TYPE: Debug (Type in)

The following options may require typing ’t’ for advanced mode to see, and may

appear in an iterative fashion as items are selected:

VTK USE MYSQL: ON

VTK USE POSTGRES: ON

CMAKE CXX FLAGS DEBUG: -g -Wall -Wextra -W -Wshadow

-Wunused-variable -Wunused-parameter -Wunused-function -Wunused

-Wno-system-headers -Wno-deprecated -Woverloaded-virtual

VTK USE GUISUPPORT: ON

VTK USE QVTK: ON

(To access this option, press ’c’ to configure after setting VTK USE GUISUPPORT)

DESIRED QT VERSION: 4

(To access this option, press ’c’ to configure again after setting VTK USE QVTK)

(e) Now you should have a ’g’ to generate option. If not, type ’c’ to configure again.

(f) Type ’g’ to generate.

(g) make

(h) make install

7. Obtain and install libdaemon.

8. Obtain and install dbus.

9. Obtain and install avahi at least version 0.6.22. This may require you to get intltool for the

install. On 64-bit systems, you will need either version 0.6.23 or the patched version of

Avahi included with OVIS. Whatever version of Avahi you use, you must build the avahi-qt4

library if you plan to build the OVIS baron GUI.

10. Build avahi and install it as a system service. Configure avahi as follows:

setenv PKG_CONFIG_PATH /usr/local/lib/pkgconfig:$QTDIR/lib/pkgconfig

./configure --disable-python-dbus --disable-mono --disable-python \

--disable-gtk --disable-qt3

10



2.2 OVIS Install

1. Obtain the OVIS source at ovis.ca.sandia.gov

2. mkdir /path/to/OVISBuildDir

3. cd /path/to/OVISBuildDir

4. ccmake /path/to/OVISSrcDir

5. Use the following settings within ccmake:

(Type ’c’ to configure to see these options; ignore initial warnings)

CMAKE BUILD TYPE: Debug

DNS SD INCLUDE DIRECTORIES: /usr/include (or the include dir of Avahi if you in-

stalled it in a non-standard location)

OVIS USE AVAHI: ON

VTK DIR: /path/to/VTK/BUILD/dir (Don’t use the VTK install dir)

Type ’c’ to configure. You may see more warnings but these may be ignored if there are no

conflicts.

Make sure that all the Avahi library variables point to the versions in /usr/local/lib and

not /usr/lib64 or /usr/lib libraries if you have built your own version of Avahi.

6. Now you should have a ’g’ to generate option. If not, type ’c’ to configure again.

7. Type ’g’ to generate.

8. make

9. make install

You are now done building OVIS 2.0!

Note also that OVIS will place on your system the plain text configuration file

${HOME}/.config/Sandia/ovis.conf. This will contain Baron state information (as described

in §6) and database usernames and passwords should you choose to explicitly save them (see the

ServerConnection window in Figure 14 described in §6 and §7.1).

2.3 MySQL Settings

1. If MySQL is not currently running (however, it should be if you are running on a system

with Fedora 8 or greater installed):

/sbin/chkconfig --level 345 mysqld on # run MySQL daemon at boot

/sbin/service mysqld start # run MySQL daemon now

11



2. You should create a database user named ovis. This user will need full administrative priv-

ileges on the local machine and the ability to alter tables and insert records from machines

where data will be collected. The administrative privileges are required to load a shared

library (libovis-mysql.so) that contains functions used to signal the OVIS shepherd pro-

cess when rows in certain tables are inserted or modified. For connections from network

interfaces that face outside the cluster, you may require a password for the ovis user. Remote

connections from external networks will still require permission to insert records into the

database in order to request analyses of collected data. For example, if you will be using

OVIS to store data into a database called OVIS Cluster:

mysql -u root -p

mysql> GRANT ALL PRIVILEGES ON OVIS_Cluster.* TO ’ovis’@’localhost’;

mysql> GRANT ALL PRIVILEGES ON OVIS_Cluster.* TO ’ovis’@’192.168.1.%’;

mysql> GRANT INSERT,DELETE,UPDATE,EXECUTE,SELECT ON OVIS_Cluster.* TO

’ovis’@’someremotehost’ IDENTIFIED BY ’somepassword’;

mysql> flush privileges;

Note that you should configure mysqld so that no password is required to access the database

from the private (administrative) network of your cluster or the local host where mysqld and

the OVIS shepherd process will run. This way, sheep and shepherd processes do not need to

be configured with any database passwords.

3. There is a user defined function that must be loaded into the MySql database. This will go

into the mysql.func table. It needs only to be added once – not on a per OVIS Cluster basis.

If you use the database effector described in §4.2, this will occur with the -t 4flag. If you

load a mysqldump (such as the example one for the Whitney database that comes with the

release), ideally the function should be loaded as part of this process, however in practice the

authors have seen that this may be dependent on the MySQL version. It is thus recommended

that you run the database effector at this point.

4. Note: Some users have reported that VTK’s MySQL interface cannot find mysql.sock de-

spite its location being specified in the /etc/my.cnfconfiguration file. If this occurs, do the

following:

cd /tmp

ln -s /var/lib/mysql/mysql.sock mysql.sock

2.4 PostgreSQL Settings

If you wish to use a PostgreSQL database to hold OVIS information, you will need to configure it

appropriately.

12



1. You will need to edit the configuration file /var/lib/pgsql/data/postgresql.conf and

change the listen addressessetting to allow incoming connections from remote machines

(both sheep inserting measurements of cluster behavior and users connecting with the baron

to perform analysis). Unless you have a reason to specifically avoid a particular network in-

terface, we suggest listening on all interfaces. We also recommend turning off informational

messages printed by clients.

listen_addresses = ’*’ # listen on all network interfaces

client_min_messages = warning # print only warnings+errors

2. In addition to requesting that the daemon listen on network interfaces, you must specify

how authentication should occur in /var/lib/pgsql/data/pg hba.conf . For local con-

nections or from network interfaces on the administrative network of a cluster, you should

require no password so that sheep and shepherd processes may connect. For connections

from network interfaces that face outside the cluster, you may require a password for the

ovis user. As an example, consider the following lines:

# TYPE DATABASE USER CIDR-ADDRESS METHOD

## Connections on the local machine

local ovis ovis trust

host ovis ovis 127.0.0.1/32 trust

local OVIS_Cluster ovis trust

host OVIS_Cluster ovis 127.0.0.1/32 trust

## Connections on private cluster admin network

host OVIS_Cluster ovis 192.168.1.254/24 trust

## Connections from remote sites. Requires password

host OVIS_Cluster ovis 74.125.19.19/24 ident

3. If the PostgreSQL postmaster daemon was running and you changed any of the configuration

files above, you should restart it:

/sbin/service postgresql restart

Otherwise, if the daemon was not currently running, set it to run on reboot and then start it

manually:

/sbin/chkconfig --level 345 postgresql on # run daemon at boot

/sbin/service postgresql start # run PostgreSQL daemon now

4. You should create a database user named ovis. This user will need full administrative priv-

ileges on the local machine and the ability to alter tables and insert records from machines

where data will be collected. The administrative privileges are required to load a shared li-

brary (libovis-psql.so) that contains functions used to signal the OVIS shepherd process

when rows in certain tables are inserted or modified. For example, if you will be using OVIS

to store data into a database called OVIS Cluster:

13



createuser -s -d -l -P ovis # You will be prompted for a password.

createdb -p -U ovis ovis # Enter the password for ovis.

createdb -p -U ovis OVIS_Cluster

5. There is a user defined function that must be loaded into the PostgreSQL database. It needs

only to be added once – not on a per OVIS Cluster basis. If you use the database effector

described in §4.2, this will occur with the -t 4flag.

2.5 Additional General System Settings

Finally, many Linux distributions will need some system settings changed, links created, and dae-

mons turned on or off.

1. While it is possible to run the shepherd process on systems with SELinux enabled, it is

beyond the scope of this document to cover all of the configuration issues required. You may

wish to configure your shepherd nodes to run in permissive rather than enforcing mode.

2. Place the following lines in your iptables configuration file (/etc/sysconfig/iptableson

most systems):

# Allow mDNS (also known as Avahi, Zeroconf, Bonjour)

-A INPUT -m state --state NEW -m udp -p udp --dport 5353 \

-d 224.0.0.251 -j ACCEPT

# OVIS

-A INPUT -m state --state NEW -m udp -p udp --dport 49154 -j ACCEPT

-A INPUT -m state --state NEW -m tcp -p tcp --dport 53170 -j ACCEPT

You may also need to add entries to allow PostgreSQL (port 5432) or MySQL (port 3306)

connections, depending on which distribution of Linux you use and which database you

prefer.

3. Turn libvirtd off

4. Set symbolic links for libraries if you are on a 64 bit machine:

cd /usr/lib64

ln -s /path/to/ovisBuildDir/lib/libovis-mysql.so libovis-mysql.so

ln -s /path/to/vtkInstallDir/lib/vtk-5.3/libvtkCommon.so.5.3 \

libvtkCommon.so.5.3

ln -s /path/to/vtkInstallDir/lib/vtk-5.3/libvtkFiltering.so.5.3 \

libvtkFiltering.so.5.3

ln -s /path/to/vtkInstallDir/lib/vtk-5.3/libvtksys.so.5.3 \

libvtksys.so.5.3

14



3 OVIS Components

In this section we describe the components of OVIS and their general interaction. For more infor-

mation on the OVIS architecture see [1].

3.1 OVIS Components

OVIS uses a whimsical and intuitive analogy for naming its components.

• Sheep - the components which report (bleat) data values. Details on setting up the sheep

data collectors can be found in §4.3.

• Shepherds - the components which maintain the databases to which the sheep report. Details

on setting up the database can be found in §4.1 and §4.2.

• Baron - the GUI from which the data can be viewed and analyzed. Features of the Baron

are given in §6 with an example in §7.1.

• Haruspices (singular Haruspex) - analysis engines, used to determine potentially porten-

tous abnormal behaviors. These are named after haruspicy, the practice of examining sheep

entrails for divination. Haruspices are described in more detail in §5.

3.2 General Running OVIS

Executables for the sheep, shepherd, baron, and the associated database effector are in

/path/to/ovisBuildDir/bin. A quick command reference is shown below for the test example

described in §7.2:

• Running the database effector:

./bin/ovis-db -d -t 16383 -u mysql://ovis@localhost/OVIS_Testone \

-x /path/to/ovisSrcDir/data/testone.ovdb

• Running the shepherd:

./bin/shepherd --name=Testone \

--database=mysql://ovis@localhost/OVIS_Testone

• Running the sheep:

./bin/sheep --name=Testone

15



• Running the baron:

./bin/baron

Note that you do not always have to start all components. If you are only taking data and not

examining it, you only need to start the sheep and shepherd. If you are only examining data in an

existing database and are not taking any additional data, you only need to start the shepherd and

the baron. If you only want to look at the geometry of a cluster and neither want to take data nor

perform any analyses, you only need to start the baron.

16



4 Setup

This section describes set up of the configuration files, samplers, and database necessary for run-

ning OVIS.

4.1 XML file

The XML file, canonically named <clustername>.ovdb, contains information on the cluster com-

ponents, including additional components such as storage elements; their physical configuration;

the metrics to be sampled; and IP addresses of the sheep, shepherd, and baron nodes.

The OVIS 2.0 release comes with an example XML file for theWhitney cluster, whitneydemo.ovdb.

In most cases, it may be easiest to copy this file and edit it for your cluster. Metric data for this

example is also included and will be discussed in §7.1.

An additional file, whitneyterascalademo.ovdb is included that illustrates use of OVIS for

simultaneous monitoring of compute and storage resources. Finally, two small example files,

testone.ovdb and testonecpu.ovdb, are included and discussed in §7.2 for use on your ma-

chine. The latter file also illustrates the specification for display of per-core data for multicore

processors as discussed in §4.3.1.

This section describes items of note in the XML file.

4.1.1 Details of the XML file

In the cluster tag, the name field should be replaced with your cluster name.

The component types section lists information for each type of component you have in your cluster,

e.g., node, rack, switch. Each type should be listed separately in its own component type block.

Each component type should specify the following:

• type information - including the name by which the component will be identified, e.g., “rack”

and whether it is a container or not, e.g., a rack will contain nodes and is therefore a container.

• drawing information that will represent that item’s appearance (e.g., render/Rack.vtp,

where the path is relative to the directory the ovdb file is in)

• size and slot information for drawing and the latter for determining the position of contained

components if this component is a container. Units are in millimeters and we take 1 rack unit

(1 RU or 1U) to be exactly 42 [mm] for convenience.

• sampler information - samplers that will run on this type of component, which metrics they

will sample, and their interval. Samplers will be described in more detail in §4.3.

17



Figure 1: Excerpt from the Whitney XML file pertaining to the rack.

Figure 2: Excerpt from the Whitney XML file pertaining to the node.

18



Selections of these blocks are shown in Figure 1 for the rack, which is a container with slots, and

in Figure 2 for the node, which has samplers. The Whitney cluster consists of nine racks; 284

compute nodes; twelve gateway nodes in Rack 9; and 4 login nodes, two of height 2U and two

of height 4U in Rack 1. This layout can be see in the OVIS 2.0 physical display in many figures

in §7.1.

Include in this section at least one option for the shepherd node. The shepherd node will be used

for interactions with the database when taking data and/or when performing analyses (You do not

always have to do both as described in §3.2). A shepherd node may also be a sheep (i.e., running

a sampler) node.

The instances section lists the number of each type of component. The order in which these

occur will determine the overall component identifications – CompId in database tables (discussed

in §4.2.1) – and will be significant in particular for remote samplers (discussed in §4.3).

Multiple simultaneous shepherds are currently not a supported feature (This is discussed in §8.2).

However, you can specify multiple shepherd possibilities in advance, thus allowing yourself op-

tions as to where you will choose to start a shepherd at a later time. This can either take the form

of specifying multiple possible instances – in this example this would take the form of increasing

the number of instances of Component Type “ts” in Figure 3 (top) and assigning different address

information to each of those instances – or of assigning multiple addresses to the same instance

(i.e., the same CompId). The use of address infomation is described below.

The associations section specifies the physical layout. Containers and contained components and

their relative associations are specified. Containers must specify their type, their instance (by

“num”), their overall position and orientation in space, and, optionally a short name by which they

can be identified. Contained components must specify their type, their instance, the slot in the

container in which they reside (number of slots were specified in the component type block, and

an optional short name (e.g., for Whitney node 1, “wn0”).

Contained components can also be used to illustrate components of a node – e.g., fans or cores.

Figure 4 illustrates the use of contained components for a multi-core display. The sampler for this

case is described in §4.3.1.

Not all components in the instances must be in the associations section – for instance, you may

not want to explicitly draw the shepherd nodes. Selections of these blocks are in Figure 3 (top).

The addresses section gives IP and MAC addresses by which sheep and shepherds are identified.

An excerpt of this section is in Figure 3 (bottom). While Avahi is used by shepherds to advertise

their availability, each component must have a unique identifier in order to insert information in

the database. These identifiers appear in the CompId column of the StartupData table. You

may specify addresses explicitly in the addresses section or you may use a regular expression to

transform values from a column in the StartupData table into a component id (CompId) with a

hint. Explicit address entries look like either of the two options below in the XML file:

<addresses>

19



Figure 3: Excerpts from the Whitney XML file pertaining to the instances and

associations (top) and addresses (bottom). The relationship between compid,

component type, and component num ensures that all information for a given

component is properly associated.

20



Figure 4: Display (top) and assocation specification (bottom) of contained

components used to illustrate a node with four CPUs, each of which has four

cores. The association excerpt is from the testonecpu.ovdbfile.

21



<address compid="2" type="ipv4" data="481d53a4"/>

<address compid="2" type="ethernet" data="0017deadbeef"/>

</addresses>

<addresses>

<address comptype="cn" compnum="1" type="ipv4" data="481d53a4"/>

<address comptype="cn" compnum="2" type="ipv4" data="481d53a5"/>

</addresses>

where the type attribute should be either “ipv4” (for TCP/IP addresses) or “ethernet” (for MAC

addresses) and the data attribute should be a hexadecimal number that is either 4 or 6 bytes long

depending on the address type.

Hints are specified like so:

<addresses>

<hint>

<key column="NodeName">

<regex comptype="cn" compnum="%1">cn([0-9]+)</regex>

<regex comptype="cn" compnum="1">admin</regex>

</key>

</hint>

</addresses>

Each hint tag (there may be several) must always contain exactly one key tag. The column attribute

of the key tag specifies a column in the StartupData table. Note that when the sheep program is

run on a component without an entry in StartupData, the sheep will run a special metric sampler

that adds columns to StartupData containing the node’s name (NodeName in the example above),

operating system, kernel version, and other information reported by the uname command. This

results in many rows in StartupData with network addresses and other information specified but

no values in the CompId column that assigns a unique id to the component by its network address.

You may use regex tags in the XML file to assign a component number to any entry in StartupData

by extracting a numeric substring from the key column’s value with a regular expression. In the

example above, any entry in the NodeName column that starts with “cn” and ends with a decimal

number will be assigned the CompId corresponding to the “cn” CompType and whose instance

number matches the number in the hostname. It is also possible to create regular expressions that

match only a given hostname (such as the second regular expression in the example) and specify

both the component type and number directly. Note that component numbers are unique across all

components of a given type while component ids are unique across all components of all types.

The ComponentTable contains a mapping between component numbers and ids. If you use hints

to specify component numbers (and thus ids), you must allow the sheep processes to insert their

network addresses, host names, and other data into the StartupData table and then run ovis-db

with -t 512 (c.f. §4.2) to assign values to the CompId column in StartupData. Only after you do

this will the sheep be able to insert metric data into the database.

22



Figure 5: Excerpt from the Whitney-Terascala XML file with the association

information for the Terascala storage rack.

Note that OVIS can simultaneously monitor any number and type of resources. The example file

whitneyterascalademo.ovdb includes specification information for the Whitney cluster and an

associated Terascala [6] Storage rack which is a container of 4 chassis each of which contains 5

blades. The associations section of this file specifying this rack is shown in Figure 5. The resultant

OVIS physical display for the combined resources is shown in Figure 6.

4.2 Database Effector

Once you have a properly formatted ovdb XML file (located, say, at /path/to/cluster.ovdb),

you should run the ovis-db program to populate a database for the sheep, shepherds, and baron

to use given the XML file. The ovis-db utility also allows you to insert test data (formatted as an

XML ovdata file) into a database but that is not covered here.

First, you should create the database. The name of the database must be OVIS �ClusterName�
where �ClusterName� matches the name attribute of the cluster tag of your ovdb file. We will

assume �ClusterName� is “Cluster” for the rest of this section. For MySQL, run this command to

create the database

echo "CREATE DATABASE OVIS_Cluster;" | mysql -u ovis

For PostgreSQL, run this command

createdb -U ovis OVIS_Cluster

Once the database exists, run ovis-db to populate it. For MySQL databases use:

23



F
ig
u
re

6
:
P
h
y
sical

d
isp

lay
o
f
th
e
W
h
itn

ey
co
m
p
u
te
clu

ster
n
o
d
es

an
d
th
e
T
erascala

S
to
rag

e
R
ack

.
F
o
r
th
e
co
m
p
u
te
n
o
d
es,

A
ctiv

e
M
em

o
ry

is
d
isp

lay
ed
;
fo
r
th
e
T
erascala

C
h
assis,

F
an

S
p
eed

is
d
isp

lay
ed
;
fo
r
th
e
T
erascala

B
lad

es,
P
o
w
er

O
n
H
o
u
rs

are
d
isp

lay
ed
.
O
n
e
in
stan

ce
o
f
each

o
f
th
ese

co
m
p
o
n
en
t
ty
p
es

is
p
o
p
p
ed

o
u
t
in

th
e
fi
g
u
re.

M
etric

v
alu

es
fo
r
th
e
T
erascala

n
o
d
es

are
b
ein

g
o
b
tain

ed
v
ia
rem

o
te
sam

p
lers

ru
n
n
in
g
o
n
th
e
T
erascala

ad
m
in

n
o
d
e
(n
o
t
sh
o
w
n
).

24



Constant Action

1 Create the database

2 Create tables

4 Load dynamic library functions into the database server

8 Populate ComponentTypes table

16 Populate MetricValueTypes table

32 Populate MetricValueTableIndex table

64 Populate Components table

128 Populate MetricCollectionSamplers table

256 Populate RemoteSamplerLookup table

512 Populate StartupData table

1024 Populate ComponentGlyphs table

2048 Prepare trigger actions

4096 Populate metric tables with static data (e.g. component coordinates)

Table 1: Numeric constants that may be summed and passed to the ovis-db’s

-tflag specifying which actions are to be performed.

ovis-db -d -t 8191 -x /path/to/cluster.ovdb \

-u mysql://ovis@localhost/OVIS_Cluster

For PostgreSQL databases use:

ovis-db -d -t 8191 -x /path/to/cluster.ovdb \

-u psql://ovis@localhost/OVIS_Cluster

The -d flag tells ovis-db to drop any existing rows or tables as necessary. The -t 8191 option

instructs ovis-db which actions to perform. The number specified is a bit vector composed by

adding numbers from Table 1. The actions are executed in the order they appear in the table.

Generally you will only need to run this command once as specified above.

While most actions simply create or populate tables, some perform less trivial tasks and order

is important. The dynamic libraries (libovis-mysql.so and/or libovis-psql.so) must be in-

stalled into their proper locations before ovis-db is asked to have the SQL server process load

them. The SQL server must have loaded these dynamic libraries before the database triggers are

prepared since the triggers invoke functions provided by these libraries2. If you load the example

Whitney mysqldump for your first test case, rather than creating the database tables via the effector

as described above, it is recommended that you run the effector with flag -t 4 in order to ensure

that this function is loaded, in case it is not loaded as part of loading the mysqldump.

2Specifically, the function signal local haruspex is provided to send a UDP message to the local shepherd

when rows of the HaruspexRequests or haruspex subresults tables discussed later are inserted or modified.

25



4.2.1 Database Tables

Information in the XML file is used to set up the database tables. Of particular interest are:

• ComponentTypes - information about the Component Types

• ComponentTable - associates a given Component Type and number with the unique Com-

pId and its name.

• StartupData - for each component address information and samplers

• EventIndex - unique identification of metric value entries including in which table the entry

was stored and where in that table the entry is stored (MetricValue tables are described in

more detail below).

• TimeIndex - association of the unique identifiers in the ovdbtabEventIndex and their time

of occurrence.

You should also be aware of the HaruspexIds table. This table assigns unique instance numbers

to any active shepherds on this database. The use of “Haruspex” in the name reflects the intent

that analyses may be performed differently if there are multiple shepherds available. Multiple

shepherds is not a supported feature at this time and is discussed (briefly) in §8.2.

Database tables for the samplers are described in more detail in §4.3. Database tables for analyses

are described in §5.2.

4.3 Data Samplers

The OVIS 2.0 release comes with several samplers, some of which read from well-known lo-

cations on Linux installations and will probably work as is, and some which will have to be

altered to work with your system. The former include those that read from /proc, such as

ovMetricLinuxProcStatUtilSampler and ovMetricLinuxProcMemInfoSampler. The latter

will require some modification of configuration information, such as available metrics from the

source or path information as in, for example, ovMetricExampleLinuxlmsensorsSampler and

ovMetricExampleLinuxSmartctlSampler.

Samplers can either be local or remote. A local sampler is a process running on machine A

that collects metrics related to machine A and then inserts them on behalf of itself into an OVIS

database – which is usually some remote machine C but could also be A. A remote sampler is

a process running on machine A that collects metrics related to some other machine B and then

inserts them on behalf of machine B into an OVIS database – which is usually some remote ma-

chine C but could be B (or even A, but this would be odd). Examples of remote samplers are

ovMetricExampleLinuxIMPItoolSampler and ovMetricExampleLinuxSNMPNodeSampler. In

26



the case of the combined Whitney-Terascala monitoring, all of the Terascala samplers were re-

mote with chassis data being collected via an SNMP sampler, and blade and associated disk

data being collected via both an SNMP sampler and a Smartctl sampler. These remote sam-

plers were running on the Terascala admin node. Of particular note are the two versions of the

ovMetricLinuxProcStatUtil Sampler, which comes in both local and remote versions, where

usage is dependent on the fidelity of the component specification as described in §4.3.1.

Figure 7: Excerpt from the lmsensors sampler illustrating specification of met-

ric name, stride, data type etc.

In the sampler, each metric must be identified by its name, the frequency of that metric’s insertion

into the database (the stride), and the metric value’s data type (e.g., ovis::INT), as illustrated

in Figure 7. Note that some metrics lend themselves to reporting as instantaneous values while

others as differences from their last value, as for counters. The sampler inserts the metric data

value into the database via its RecordXXX (e.g., RecordInt) function that takes the data value and

a number identifier that uniquely distinguishes the component and the metric. Required functions

in the sampler, such as GetMetricName and GetMetricStorageType, associate a particular num-

ber identifier with a particular metric. For local samplers, unique distinguishing of the component

is done innately by the identity of the sheep. The situation is more complex for remote samplers,

however. Not only must the remote sampler associate a particular numeric identifier with a particu-

lar metric, but the numeric identifier must also be used to distinguish the component. For example,

a remote sampler that keeps track of 3 metrics on behalf of 5 other components will use 15 unique

identifiers. The mapping of these identifiers to the particular components is specified via the sam-

pler listing in the XML file and the metric node map, as described below. These identifiers are

then placed into the RemoteSamplerLookup table of the database by the ovis-db command and

read by the sheep process running the remote sampler at startup.

Setup in the XML file for remote samplers involves the following:

• you must specify dummy samplers with the metrics of the correct name for the component

on whose behalf data will be taken, in order for the correct tables to be established;

27



Figure 8: Excerpts from the Whitney-Terascala XML file with partial specifi-

cation of the remote samplers. The samplers (top) given for the component to

which the data pertains, in this case the Chassis, are dummy and are just used

to establish the metric tables. The samplers (bottom) for the component that

will actually do the database insertion are real.

28



Figure 9: Excerpt from Whitney-Terascala XML file showing the metric

node maps which associate remote sampler metric numbering and the corre-

sponding components.

• you must specify real remote samplers with the metrics of the correct name and the real

collection interval on the component that is actually doing the collection and insertion; and

• you must specify a metric node map that associates a remote sampler instance and its

unique metric identifiers with the component upon which it is running and the component

on whose behalf data is being taken.

In Figure 8 the sampler specification for the Terascala chassis is a dummy, with the sampler speci-

fication on the Terascala admin node being the actual remote sampler that will be instantiated. The

metric node map in the associations section shown in Figure 9 associates the unique metric num-

berings of the real sampler running on the Terascala admin node with the particular Terascala com-

ponent (e.g., Chassis or Blade) to which those metrics pertain. For instance, in Figure 9 metrics 0-6

(the unique identifiers in the remote sampler) in the ovMetricTerascalaSNMPChassisSampler

running on the first instance of type tsadmin (which is the only admin node) are actually values for

the first chassis, tsnode 1 (the component types and number associations are in the instances and

associations sections as described earlier with respect to the Whitney XML file). The order of the

metrics (e.g., which metric is 0) is determined as previously described.

There is currently no mechanism to dynamically add in a sampler once the OVIS database has been

instantiated, as the tables for the metric data are set up at that time. These are discussed in §4.3.2.

29



4.3.1 Local vs. Remote Samplers and Component Fidelity – Multicore Example

Figure 10: Excerpt from the multicore processor XML file showing the

metric node map which associates sampler metric numbering and the cor-

responding components. This case contains both node and core mappings.

In the storage case described in the previous section, the use of a remote sampler was required

as data could only be obtained from the admin node. However, there are cases where both lo-

cal and remote samplers are possibilities. For example, for multicore processors, core utilization

information is obtained via /proc/stat on the node, but the sampler can be either local or re-

mote depending on the fidelity of the display. That is, if the nodes are illustrated only to the

node level, as they are in the Whitney example, then the sampler is a local sampler, collecting

on the node with the intent of displaying that data on the node. However, if the nodes are il-

lustrated to the core level as in Figure 4, then the sampler is a remote sampler, collecting on

the node but with the intent of displaying that data on the cores. Of particular interest regard-

ing the remote version of the sampler, ovMetricLinuxProcStatUtilRemoteSampler, is that the

/proc/stat contains overall node cpu utilization as well. This sampler thus collects both node

and core data, thereby functioning both locally and remotely, however, in order to handle the

remote component mapping, it is a remote sampler. In this case the “Dummy” tables are not

truly dummy, as they will hold the node data, but not the core data, and the metric node map

must specify mapping information for both the node metrics and the core metrics. The metric

node map for the remote sampler in the case of a node with four cpus and four cores per cpu

as described in testonecpu.ovdb is shown in Figure 10, illustrating the specification of both

node and core mapping. Further, note that in the local case (i.e., displayed on the node) the per

core metrics must all have unique names per core (e.g., CPU0UserPercUtil, CPU1UserPercUtil)

to distinguish to which core the metrics pertain, whereas in the remote case (i.e., displayed on

the core) they do not, as they are uniquely identified by the core. One can further contrast the

ovMetricLinuxProcStatUtilSampler and the ovMetricLinuxProcStatUtilRemoteSampler

and associated testone.ovdb and testonecpu.ovdb files, respectively, to contrast the use of

local and remote samplers for the same data.

30



4.3.2 Database Tables For Samplers

There are separate database tables for each combination of component type and metric that are

canonically named ‘Metric’ComponentType MetricName ‘Values’. As an example, compute

nodes (abbreviated “cn”) with a metric named CPUTemp would have metric values stored in a

table namedMetricCnCPUTempValues. Each row corresponds to a unique reporting of a metric

value and its associated component. When combined with information from the EventIndex and

TimeIndex, one can determine which component reported what value at what time.

The MetricValueTableIndex holds information on the MetricTables, in particular associating a

particular table by name with its identifier and the identifier of the sampler associated with that

metric. The samplers are listed in the MetricCollectionSamplers table, along with information

regarding upon which component type they sample on behalf of and on what interval they sample.

The interval is determined at setup time from information in the XML file. With the information

from these tables, one can determine into which table a particular metric is inserted, for which

type of component, and by which sampler. This is of particular interest for the remote samplers

where the component running the sampler is not the component for which the value actually per-

tains. Remote sampler association information thus requires information from the RemoteSam-

plerLookup table which associates a sampler, a metric, the component that is reporting the values

into the database, and the component for which the value actually pertains.

Knowledge of these tables can help in debugging samplers, particularly remote samplers, as de-

scribed in the next section.

4.3.3 Debugging Remote Samplers

Since the setting up of the remote samplers is non-trivial it is suggested that you verify the associ-

ations after you have instantiated the database with the Database Effector §4.2. In particular, note

that the Database Effector will warn you if you put in a duplicate metric map, but there is nothing

that tells you:

• if there are not enough or too many numbers compared to the number of overall metrics

• if there are the wrong number of metrics mapped onto a given remote component

– this is to allow you to deliberately not collect metrics that you are not interested in, but

it also opens you up to accidentally missing metrics, or accidentally numbering wrong

• if there is a bad type and/or number of the remote component in the metric map or in the

addresses section

– this could lead to the sampler not starting, or starting but not being able to write the

metrics to the database properly

31



In order to verify the associations, check the RemoteSamplerLookup table (which matches up

CompId, SamplerId, MetricId, and RemoteCompId) for the following things:

• cross-reference CompId and RemoteCompId in RemoteSamplerLookup with the Compo-

nentTable to make sure that the component associations are correct.

• make sure that the CompId is not -1 or something you don’t want it to be – if so you may

have misnamed the sampler or the metric in the XML file

• cross-reference SamplerId inRemoteSamplerLookupwith those inMetricCollectionSam-

plers, to make sure that the remote sampler identity is correct.

• make sure that the MetricIds are correct. In particular:

– verify that there are the correct number of them

– verify that the right ones go with the right remote CompId

Do not use hyphens in your metric names.

You can test samplers (both local and remote) via the following:

./bin/ovisTests testSampler -sampler mySampler interval iterations

where mySampler is the sampler to be tested and interval is the interval between iterations of the

test. The test will print values to stdout and not to a database.

32



5 Haruspices

In Roman practice inherited from the Etruscans, a haruspex (plural haruspices) was a man trained

to practice a form of divination called haruspicy, the inspection of the entrails of sacrificed animals,

especially the livers of sacrificed sheep.

In this section, we first provide an overview of the analysis engines, which are called haruspices

in OVIS parlance. We subsequently illustrate the utilization of these haruspices by providing an

application of the multi-correlative haruspex; for more context about this application example,

please refer to [3].

5.1 Overview

Definition 5.1. A OVIS 2.0 haruspex is a process that:

1. is triggered by the baron,

2. runs on a shepherd node,

3. executes an analytical engine.

In particular, haruspices rely on specific tables of the underlying OVIS 2.0 database.

There are currently four types of analyses supported by OVIS, although only three are part of

the public release; only these are described here. Readers interested in the fourth type (Bivariate

Bayesian) should contact the authors to discuss licensing options.

Each haruspex has the option to be run using either the learn or monitor modes of operation: In

learn a model is calculated or inferred from unmodified data. Such a model can take several forms,

such as statistical moment estimators, PDFs, etc.. In monitor the roles are here interchanged with

those of the learn mode: the data is now assessed with respect to a given model. The output of

the monitor mode is a collection of outliers, described in a way that allows for unambiguous and

efficient retrieval of the particular components and times to which these correspond; the output

may also be presented as an ordered list so as to reflect a gradation in severity or abnormality

of behavior. The output may also be seen in the physical view, where components’ values at

the displayed time can be compared to the calculated model and colored accordingly. Note that

reportable cases may occur either when a particular event diverges from the model more than

what has been set as acceptable or because no (or fewer than specified) events of a particular type

occurred. For instance, outliers – which may be defined in several ways depending on the type of

model being used – can be identified as elements of the data set that deviate from what the model

predicts within pre-defined acceptability bounds.

Within this framework, the currently available engines are the following:

33



Descriptive haruspices: In learn mode, descriptive statistics of the data set of interest are cal-

culated (estimators of the mean, standard deviation, skewness, kurtosis, as well as bounds). These

statistics can be interpreted directly by the user, or be used as input parameters to themonitormode

of the descriptive engine itself or even of another engine, e.g., to complement expert knowledge

prior to Bayesian parameter estimation. In monitor mode, relative distance in terms of mean and

standard deviation (which, as indicated, may be the result of a prior learn stage) is the criterion

according to which outliers are detected, based on user-specified probabilistic thresholds.

Bivariate andMultivariate Correlative haruspices: The goal of these engine is to seek anoma-

lous behaviors by calculating (in learn mode) or devising (with “expert knowledge”) multivariate

correlation statistics, via mean vectors and covariance matrices – and thus, implicitly, a multiple

linear regression model – for a set of tuples of variables of interest, and examining (in monitor

mode) how individual observations of these tuples of variables of interest deviate from the afore-

mentioned model. Note that the bivariate haruspex explicitly presents the linear regression model

to the user; the multivariate does not because multiple regressions can be calculated, resulting

in user interface complications which are not handled yet. Such deviations are characterized in

terms of the the multivariate Mahalanobis distance computed with the mean vector and covari-

ance matrix. This is especially useful to prevent the user from conducting more advanced and

costly analysis such as running a Bayesian engine when linear correlation between metrics can be

evinced.

5.2 Haruspex Output Tables

This section is especially intended for the advanced OVIS user, as it delves into the details of “under

the hood” of the database model used by haruspices. The user who will mostly use the Baron and

does not plan on manually inspecting the haruspex tables can directly skip to §5.2.4 where reported

events tables are described.

All haruspices report their results in output tables of the underlying OVIS database. This approach

enables data persistence, thus allowing for later inspection of the results, storage, comparison, etc.

Each haruspex uses output tables specific to it, as specified below using SQL types (note that the

SequenceId field is unused in OVIS 2.0). These tables will likely change in future versions of

OVIS.

5.2.1 Descriptive Haruspex-Specific Output Tables

In learn mode, each descriptive haruspex logs its results into the table HaruspexDescriptiveSub-

Results with primary key (RequestId, SequenceId, Rank):

RequestId SequenceId Rank SampleSize Minimum Maximum Sum1 Sum2 Sum3 Sum4

INT(11) INT(11) INT(11) INT(11) DOUBLE DOUBLE DOUBLE DOUBLE DOUBLE DOUBLE

34



Subsequently, a MySQL trigger updates the summary table HaruspexDescriptiveResults with

primary key (RequestId, SequenceId):

RequestId SequenceId SampleSize Minimum Maximum Sum1 Sum2 Sum3 Sum4

INT(11) INT(11) INT(11) DOUBLE DOUBLE DOUBLE DOUBLE DOUBLE DOUBLE

Finally, the descriptive statistics are obtained by calling the (static) CalculateFinalSatistics method,

which calculates the mean, unbiased variance, sample skewness, sample kurtosis, and G2 kurtosis

estimators (min and max do not need to be updated). These final results are those that are ultimately

presented to the user by the Baron (cf. § 6.7).

5.2.2 Correlative Haruspex-Specific Output Tables

Similarly, in learn mode, each correlative haruspex logs its results into the table HaruspexCorrel-

ativeSubResults with primary key (RequestId, SequenceId, Rank):

RequestId SequenceId Rank SampleSize Sum1A Sum1B Sum2A Sum2B SumAB

INT(11) INT(11) INT(11) INT(11) DOUBLE DOUBLE DOUBLE DOUBLE DOUBLE

Subsequently, a MySQL trigger updates the summary table HaruspexCorrelativeResults with

primary key (RequestId, SequenceId):

RequestId SequenceId SampleSize Sum1A Sum1B Sum2A Sum2B SumAB

INT(11) INT(11) INT(11) DOUBLE DOUBLE DOUBLE DOUBLE DOUBLE

Finally, the correlative statistics are obtained by calling the (static) CalculateFinalSatistics method,

which calculates the means, unbiased variances, and unbiased covariance estimators, along with

the linear correlation coefficient and the 4 linear regression coefficients. These final results are

those that are ultimately presented to the user by the Baron (cf. § 6.7).

5.2.3 Multi-Correlative Haruspex-Specific Output Tables

In learn mode, each multi-correlative haruspex logs its results into the table HaruspexMultiCor-

relativeSubResults with primary key (RequestId, SequenceId, Rank, MetricA, MetricB):

RequestId SequenceId Rank MetricA MetricB SumAB

INT(11) INT(11) INT(11) INT(11) INT(11) DOUBLE

Subsequently, a MySQL trigger updates the summary table HaruspexMultiCorrelativeResults

with primary key (RequestId, SequenceId, MetricA, MetricB):

35



RequestId SequenceId MetricA MetricB SumAB

INT(11) INT(11) INT(11) INT(11) DOUBLE

−1 −1 size

i= 0, . . . ,m−1 −1 first moments

i= 0, . . . ,m−1 j = 0, . . . , i second moments

Here m is the number of metrics; the number of rows in HaruspexMultiCorrelativeResults for

each multi-correlative haruspex run is 1+m+m(m+1)/2. Finally, the multi-correlative statistics

are obtained by calling the (static) CalculateFinalSatistics method, which calculates the means and

Cholesky values. These final results are those that are ultimately presented to the user by the Baron

(cf. § 6.7).

5.2.4 Common Haruspex Output Tables

In addition to the haruspex-specific output tables, in monitor mode all haruspices log reportable

events into the tableHaruspexRequestsReportedEventswith primary key ReportedEventId (auto-

incremented, may not be sequential for a given RequestId):

ReportedEventId RequestId Cause Value

INT(11) INT(32) INT(32) DOUBLE

where RequestId, Cause, and Value indicate, respectively, the haruspex that reported the event, the

type of event, and a numeric characterization of the event (whose meaning may depend on Cause

and on the haruspex type).

To make it possible to locate the datum that generated a reportable event, table identifier and key

in this table are logged for each event into the table HaruspexRequestsReportedTableKeys with

primary key ReportedEventId:

ReportedEventId TableId TableKey

INT(32) INT(32) INT(32)

Note that CompId is not present in the reported event tables, because it is implicit in the combi-

nation (TableId, TableKey) in HaruspexRequestsReportedTableKeys. In fact, if and when correla-

tions across multiple components are supported, there may be no single CompId associated with

an event (this would of course involve changes to HaruspexRequestsComponents).

5.3 Example: Multi-Correlative Haruspex

We now illustrate the use of OVIS 2.0 haruspices with an application of the multi-correlative harus-

pex to resource characterization. In this approach, anomalous behaviors are sought by

36



1. calculating (with “training data”) or devising (with “expert knowledge”) mean vectors and

covariance matrices – and thus, implicitly, a multiple linear regression model – for a set of

tuples of variables of interest, and

2. examining how individual observations of these tuples of variables of interest deviate from

the aforementioned model; such deviations are characterized in terms of the significance

level to which they correspond when the mean vector and covariance matrix are made those

of a multivariate Gaussian model. Note that this is directly related to the multivariate Maha-

lanobis distance computed with the mean vector and covariance matrix.

Figure 11: Actual rendering of the Red Storm platform zoomed in on the

partition on which data were taken. The nodes are colored red if below the user-

defined probabilistic threshold for being too unreliable and green otherwise.

Grey indicates there was no data in the display time window for that resource

for the metric being displayed.

For instance, Figure 11 displays a simple use case where only one pair of variables is of interest

to the analyst, namely PROCPIC 0 CORE and PROCPIC 0 Proc Int, which we will respectively

denote A and B.

When the first phase of the process described above is meant to be calculated (as opposed to

devised, e.g., using expert knowledge), then the “Learn” mode of the haruspex is turned on prior to

the execution of the haruspex on a set of training data. This is the case in the example of Figure 11:

specifically, all observations (a,b) of (A,B) between the specified start and end times (respectively

10:52:02 a.m. and 4:45:02 p.m. on November 8, 2007) on all components called rsnoden, where n

varies between 1 and 3000, are used to “Learn” a model. To ensure that the number of observations

are the same for each component, the data is interpolated by taking the most recent observed value

at even time intervals for each component.

37



As a result, a mean vector and a covariance matrix are calculated, and are available to the user in

the “Learn” tab (not selected in the figure).

Figure 12: The interface in Figure 11, zoomed in on the analysis output.

Note that the second phase of the analysis process, called “Monitor”, can be performed on either the

same data set used to infer a model, or on a different data set. For simplicity, the former option is the

case in our running example. Therefore, as illustrated again in Figure 11 and Figure 12, under the

“Monitor” tab, one can see the mean vector and Cholesky-decomposed covariance matrix that have

been calculated by the haruspex during the “Learn” phase. In particular, the means µA = 1364.15
and µB = 32.4116 as well as the covariance matrix

Σ := cov(A,B) =UtU,

where

U =







5.07163 −0.407603

0 8.21949





 ,

38



are those of the underlying (bivariate, in this case) linear regression model.

It is beyond the scope of this article to delve into too many details about multiple linear regression

models and their relationships to multivariate Gaussian distributions; one only has to know that the

underlying linear model is mapped into an N-variate (bivariate in our running example) Gaussian

model, whose probability density function (PDF) is, by definition,

fX(x) :=
1

(2π)N/2|Σ|1/2
exp

�

−
1

2
(x−µ)tΣ−1(x−µ)

�

,

where xt := (x1, . . . ,xN) is the observation of an N-tuple of interest. In our bivariate example, this

simplifies into

f(A,B)(x) =
1

2π|Σ|1/2
exp

�

−
1

2
(x−µ)tΣ−1(x−µ)

�

,

where xt := (a,b) and thus (x−µ)t = (a−µa,b−µb). (Note that the inverse covariance matrix Σ
−1

is computed only once, by means of the Cholesky decomposition.) The argument of the exponen-

tial is −1
2
times the squared Mahalanobis distance, which is the natural metric associated with the

multivariate distribution. The significance level of observation x is defined as the probability (in

the Gaussian model) of observing a Mahalanobis distance greater than that of x. This significance

level is a natural choice of cumulative distribution function (CDF) for the multivariate Gaussian

distribution; it ranges from 1 for a central (mean) observation to 0 for observations infinitely far

from the mean vector.

With this in mind, we define an outlier as any observation x of X whose significance level is less

than a user-specified threshold τ (typically τ � 1). If observations accurately follow the multi-

variate Gaussian model, then a fraction τ of observations should meet this criterion. Observations

may not follow the inferred model, however, either because the data are non-Gaussian or because

the data being monitored have a different distribution from the training data. Nevertheless, the

computed significance level is useful in assessing the deviance of an observation.

A simpler description of the significance level is possible in the bivariate case. There, the signif-

icance level happens to equal the exponential factor in the Gaussian PDF. This factor can then be

described as the relative probability (normalized to the maximum of the PDF), and an outlier can

alternatively be defined as an observation x with

fX(x)

maxIR2 fX
< τ.

As shown in the “Monitor” tab of Figure 12, a threshold value of τ = 0.005 was chosen, resulting

in 85 outliers being reported by the haruspex, and listed in the lower right text window of the user

interface. For example, the first of these outliers corresponds to an observed value of (1492,38),
which, in the context of the underlying model, has a significance level (or relative probability) of

≈ 1.574 ·10−139 < τ = 0.005, making it an outlier according to our definition. (Such a vanishingly

small value indicates that the data are non-Gaussian, since an event with actual probability of or-

der 10−139 would not realistically occur.) In turn, in the cluster view of Figure 11, all components

39



evincing outlier behavior at the time shown in the view are colored in red, whereas other com-

ponents appear in green (data were not collected on the grayed-out components during the time

interval of interest).

40



6 Baron

The Baron is the graphical interface of OVIS which enables exploration of the data. The Baron

allows the user to:

1. select a cluster and a relevant database

2. visualize cluster geometry in a physically accurate display

3. visually inspect raw variable values and those variables relative to model calculations on the

physical display

4. create haruspices and inspect the results of their analyses, both textually and graphically

5. view historical data, browsing through time history both manually and animatedly

6. view live data, updating in real-time, and

7. tune many display parameters.

Features and capability of the Baron are described in this section. Figure 13 is a picture of the

Baron with the elements referred to in this section labeled.

6.1 Cluster and Database Selection

The Bookmark Editor allows you to specify to which database you want to connect. Figure 14

(left) shows selection options filled out for connecting to local database holding the test data set for

theWhitney cluster. Use of this data set is discussed in §7.1. In addition to selecting a database, you

may enter connection parameters (user name and, possibly, a password) in the Server Connection

window in shown in Figure 14 (right). WARNING: In the ServerConnection window, if you

choose the option to remember the password for any of the different OVIS �clustername�
databases, the user name and password on your database will be stored in plain text in the

file ${HOME}/.config/Sandia/ovis.conf.

The yellow star icon indicates a user-specified static entry. The blue globe icon indicates an

automatically-populated entry, representing an available shepherd as advertised by Avahi.

6.2 Adding Views

Any number of physical and analysis panes may be shown simultaneously. You can create addi-

tional panes by either clicking on the New Pane Icons in the upper left corner of Figure 13 or the

Split Pane buttons in the upper right corner of any existent pane, also seen in Figure 13 which split

41



F
ig
u
re

1
3
:
O
v
erv

iew
o
f
th
e
elem

en
ts
o
f
th
e
B
aro

n
w
ith

an
n
o
tatio

n
.

42



Figure 14: Bookmark Editor (left) and Server Connection (right) windows.

Figure 15: Options for instantiating a new pane.

43



the existent pane in the direction indicated in the buttons. The buttons include one by which a pane

can be closed.

When a split is selected, options for the new pane are presented and can be selected as in Figure 15.

6.3 Rotating, Panning, and Zooming the 3D View

The middle pane in Figure 13 is a 3D interactive physical representation of the cluster of interest.

Moving the mouse while pressing the left mouse button will rotate the 3D view. Moving the mouse

while pressing the middle mouse button will pan the 3D view. Moving the mouse while pressing

the right button will zoom the 3D view. Also, rotating the mouse wheel button will zoom the 3D

view. Selecting the Display tab (shown in Figure 13) presents the user with the option to reset the

physical view to its original position.

6.4 Metric Drop

On the far left of Figure 13 is a pane which lists the various component types in this data set and

the metrics which are taken upon them. Metrics can be selected with the mouse and dragged and

dropped upon the physical view (Middle pane). The physical view will then color the elements by

the selected metric. A color bar will indicate the color-value mapping. By default, the range has

as its max and min values the max and min values for that metric for the time displayed (More on

Time in §6.8). The range can be overridden as described in §6.5.

Components having no value at that time (or within the relevant fade period, described in §6.8)

will be shown as gray.

Drops of analyses onto the physical view are also enabled and are discussed in §6.7.

6.5 Setting the colors

The Baron provides a default background color, as well as default color scheme, scale and ranges

for the component variables. These can be modified through the Colors tab – the tab is shown

in 13), with the content of the tab illustrated in Figure 16. The Components section of the Color

tab allows one to override the default range for the color legend for metrics. This can be done by

selecting Override default range and specifying the range explicitly. If this is done, the color

range for the metrics will be fixed, even as one animates through time (see §6.8).

Setting the range manually allows easy visual comparison of the distribution and locations of

regions of interest across time and across data sets. Selecting a subset of the overall possible range

allows one to see finer grained detail within a section of interest. For example, if the range for a

44



Figure 16: The color tab, where the color legend can be set.

particular metric ranges from 0-100, one may be primarily interested in details of the values in the

upper end of the range, and therefore may set the color range from 80-100, for instance.

All color related options in this section will be retained as described in §6.10.

6.6 Search bar

The Search Bar (aka Component Bar) 13 is used to pop out components in the physical display.

This is shown in Figure 13 where we have popped out a node and a rack. Components to pop out

can be specified by short name (e.g., wn207) or by component type and number (e.g., rack8). The

advantage of the former is that the short name is generally well known. The advantage of the latter

is range notation is supported (e.g., “node10-14,node57-65”).

Some of the analysis monitor results can also be dropped onto the Search Bar, popping out the

outlier components. This is described in more detail in §6.7.

6.7 Haruspices

The Baron provides a graphical interface for creating and obtaining the results of the haruspices

(cf. 5).

A typical analysis pane is shown in Figure 17. It contains regions in which to input the metric

or metrics of interest, the time range of the calculation, and the components involved in the cal-

culation. The metrics can be populated by dragging and dropping them from the metric list. The

components can be specified by component type and number, in which case ranges are supported,

or by short name.

45



Figure 17: Descriptive learnAnalysis pane where the metric, components, and

time range for analysis are specified

46



F
ig
u
re

1
8
:
D
es
cr
ip
ti
v
e
m
o
n
it
o
r
A
n
al
y
si
s
p
an
e
(l
ef
t)
an
d
as
so
ci
at
ed

M
o
d
el
d
ro
p
.

47



learn analyses learn a model; monitor analyses determine outliers given a model. For more infor-

mation on the learn and monitor phases of OVIS analyses, please refer to §5.1.

After a learn analysis, one can click on the Monitor tab and the Monitor window will have the

the model parameters automatically filled with the results of the learn analysis. In the case of the

Descriptive Learn analysis in Figure 17 the associated Descriptive Monitor analysis is shown in

Figure 18 (left). The Mean and Deviation are automatically populated from the learn; the number

of deviations is by default 2. All of these values can be changed by the user. In the case of

the Multicorrelative analysis, the parameters that are automatically filled are those of the matrix

described in §5.3.

Clicking the Learn or Monitor buttons on the pane start the analysis. When the results in an analysis

window are not current, either because new parameters are being entered into an analysis pane or

because the analysis has not yet returned, the result area of the window is colored pink.

After a monitor analysis, outliers are displayed in the results window. These outliers can also be

displayed in the physical display, by dragging and dropping the analysis onto the physical display

(Grab where it says “Haruspex submitted successfully”). Supported drops are

• Descriptive Monitor - colors everything below the threshold red, above blue, and in between

green. See Figure 18 (right).

• MultiCorrelative Learn - colors on a scale from red to blue everything by its significance

level. See Figure 28 (top) in §7.1.

• MultiCorrelative Monitor - colors red everything with significance level below the threshold,

green everything above the level. See Figure 28 (bottom) in §7.1.

In the first and third cases, the values corresponding to the color bar legend are meaningless - they

only serve to make “good” values green and bad values “red” or “red/blue”. The multicorrelative

cases are described in more detail in §7.1.

Outliers will pop out of the physical display if the analysis is also dragged to the Search Bar. So

that you may be sure that you have successfully dropped the results properly, the Search Bar will

flash green a few times after the drop.

The Repeat Analysis button is currently not enabled. When enabled it will automatically recalculate

the analysis including any newly collected data. This will ensure that the model is current and will

allow the user to note model changes with time. This feature will be enabled in a future release.

6.8 Time Features

One can manually scroll through time or have the Baron automatically animate playing through

time, and view the current state in the physical display.

48



Figure 19: The user interactive time widget allows the user to scroll through

time in the physical display.

The user interactive time widget 19, shows the current time in the physical display. There are

marks/hands for month, day, hours, minutes, and seconds that can be grabbed and pulled forward

and backward in time with the current state shown in text as well.

Additional handling of time is done in the Time tab – the tab is shown in 13), with the content of

the tab illustrated in Figure 20.

The first check-box controls the visibility of the time widget. The box below enables animated

playing through time. Setting the x RealTime entry to values greater than zero enables automatic

playback at the specified rate, where 1 equals real time. Setting the Frame Rate (target) entry

specifies the maximum number of times per second that the baron should update and redraw the

cluster. High values require more communication with the database but will make color fades

and the motion of the clock hands on the time widget appear smoother. Low values require less

communication but may result in a “jumpy” looking interface. It is possible to specify a frame rate

that the baron is unable to produce. In this case, it will redraw the cluster as quickly as it can.

After the x RealTime and Frame Rate (target) entries have been set, the user can press the

space bar (on the keyboard) in the 3D View tab to start and stop the clock. Note that stopping the

clock will only freeze the display, and the internal clock will continue to progress; the 3D View

will reflect the data at the frozen time.

The playback time section allows one to manually set the initial time of the clock. The Earliest

button will set the time to the earliest time in the database; the Now button will set the time to the

current time on the machine. After adjusting the time, click the Apply button for the changes to

take place.

Data is recorded in the database at the fidelity of a second. Because of issues such as clock skew,

database insert times, etc., it is desirable to see all data not at a given point in time, but within

a window of time. For this region a Fade Period can be set that will allow components in the

physical data to be colored by the data value corresponding for that time nearest in time to that

shown on the clock within the specified fade period. For example, for the Whitney database,

described in §7.1 data is taken on 5 second intervals, so one should set the Fade Period to 9, and

preferably greater, so that all components will be colored by a timely value. In order to distinguish

the age of values, the component color will also fade out as the data value gets increasingly distant

from the clock time. There is no correct value of the fade period – this is determined by the

49



frequency of data collection/inserts and the user’s desire regarding the fading effect. For example,

if the user finds the fading distracting, a longer time may be desirable; if the user is specifically

trying to investigate when components cease to report a smaller fade time is more appropriate. Note

also that longer fade periods require more data to be sifted through so that longer fade periods result

in decreasing performance.

Note that currently the fade period is a global variable pertaining to all physical views in the Baron.

All time related options in this section will be retained as described in §6.10.

6.9 Haruspex Requests View

The Haruspex Requests view 21 can be generated via the New Pane icons in 13. This is a table

that lists the previously requested analyses, displaying the RequestId and some parameters of the

request as described in §5.2. Single clicking an entry brings up the results. Double clicking an entry

instantiates the corresponding Analysis view, filled out with the request and results. This allows

the user to view the results without having to redo the analysis. The analysis pane generated in this

way is similar to other generated panes and can be dropped on the the physical display and Search

Bar, as usual.

6.10 Saving State

State, including color bar ranges, time ranges for analyses, time shown in the physical pane, etc, in

plain text in a file in $HOME$/.config/Sandia/ovis.conf.

50



Figure 20: The Time tab, which allows the user to set the time; choose to play

through time; and set the fade period.

51



F
ig
u
re

2
1
:
T
h
e
B
aro

n
R
eq
u
ests

v
iew

w
h
ich

allo
w
s
o
n
e
to

ex
am

in
e
p
rev

io
u
s
an
aly

ses.
T
h
e
u
p
p
er

left
is
an

in
teractiv

e
tab

le

fo
r
selectin

g
p
rev

io
u
s
an
aly

ses.
S
in
g
le

click
in
g
an

en
try

b
rin

g
s
u
p
th
e
resu

lts
in

th
e
lo
w
er

left.
D
o
u
b
le

click
in
g
an

en
try

in
stan

tiates
th
e
co
rresp

o
n
d
in
g
A
n
aly

sis
v
iew

.

52



7 Examples

The OVIS 2.0 release tar ball comes with three example cases. The first includes a set-up file and

example data from a cluster. The example data is released as a separate tarball. The second and

thrid are a set ups file, that with minor modifications will take and display data from your local

machine.

See §2 for info on the mysql settings and general system settings before beginning.

7.1 Whitney Example Data

This case involves analysis of some test data already gathered from a cluster. It illustrates use of the

Baron in case where we find anomalous behavior when we consider the behavior of two variables

taken in conjunction (Multicorrelative analysis) that would be insufficiently captured, if one were

to independently consider the behaviors of the two variables.

Data is not gathered, but rather is loaded from a mysqldump of previously gathered data. Rel-

evant files are 1) whitneydemo.ovdb in the OVIS data directory which is the set-up data file

which was used in the actual data collection and established the cluster display arrangement and 2)

mysqldump.OVIS WhitneyRelease.sql.tgzwhich is the mysqldump of the database and exists

in a separate release data tarball.

We illustrate the analysis by building the display in Figure 22 which consists of three analyses, two

Descriptive and one Multicorrelative using the variables in the two Descriptive analyses. Further,

there are physical displays associated with each analysis, where the displays easily illustrate outlier

behaviors relative to the resultant analysis models.

7.1.1 Getting Started

1. First load the mysqldump. This requires creating the empty database in mysql and then

decompressing and loading the data file.

mysql> create database OVIS_Whitney;

mysql -u ovis OVIS_Whitney < mysqldump.OVIS_WhitneyRelease.sql

2. If this is your first use of the MySql database with OVIS it is recommended that you run the

database effector to load the user defined function for initiating analyses as described in §4.2.

3. Edit the StartupData table so that OVIS will recognize the shepherd on your machine for

performing analyses:

mysql> use OVIS_Whitney;

mysql> select * from ComponentTypes;

53



F
ig
u
re

2
2
:
U
sin

g
th
e
B
aro

n
fo
r
an
aly

sis.
T
h
ree

sets
o
f
an
aly

sis
an
d
m
o
d
el
d
ro
p
s
o
n
to

th
e
p
h
y
sical

d
isp

lay
are

sh
o
w
n
.
T
w
o

are
d
escrip

tiv
e
statistics

an
d
o
n
e
is
a
m
u
ltico

rrelativ
e
an
aly

sis.
O
u
tliers

relativ
e
to

th
e
relev

an
t
m
o
d
els

are
co
lo
red

in
th
e

fi
g
u
res.

54



(this will show you that the shepherd has CompType 5)

mysql> select * from ComponentTable where CompType=5;

(this will show you that the shepherd has CompId 314)

mysql> select * from StartupData where CompId=314;

(this will show you the current allowable shepherds)

mysql> update StartupData set AddressData="XXX" where

CompId=314 and AddressType=2;

(replace XXX with the hex version of your IP address)

mysql> update StartupData set AddressData="XXX" where

CompId=314 and AddressType=0;

(replace XXX with the hex version of your MAC address)

4. Start the shepherd:

cd /path/to/ovisBuildDir

./bin/shepherd --name=Whitney \

--database=mysql://ovis@localhost/OVIS_Whitney

If you get a warning at this point like

Shepherd was unable to determine its own component ID.

This will cause haruspex calculations to be unreliable

at a minimum. Set a component ID in the StartupData table.

then you have not edited the StartupData table properly.

5. Start the baron:

in a different window but the same directory run:

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/path/to/ovisBuildDir/lib

./bin/baron

6. Choose the Whitney database in the Baron (The Bookmark Editor and ServerConnection

windows are described in §6.1):

(a) When the Browser Window comes up select: View→Show Bookmark Editor

(b) Fill in the following fields:

• Service name = Whitney

• Protocol = MySQL

• Hostname = localhost

• Database name = OVIS Whitney

(c) Click on the plus sign

(d) Select “Whitney” in window

55



(e) When the OVIS Server Connection window comes up you should see ”ovis” as the

user name and nothing for the password. You can use the default, if you have enabled

user ovis the appropriate permissions on the OVIS Whitney database; otherwise you

can use the user name and password of your choice. Note that these will be stored (as

described in §2) in plain text on your machine. Click ”OK”.

(f) At this point the OVIS Digest (baron window) should appear with the cluster displayed.

7. Set the Fade Period in the Time Tab to 30 seconds. (The Fade Period and Time tab are

discussed in §6.8. Determination of the correct value based on the innate frequency of the

data collection (in this case 5 second intervals) and the preference of the user as to the fading

effect. If this is the first time running the Baron, the date/time may be set to January 1, 1970,

GMT. To change the date/time to the earliest time at which there is data for this cluster, click

on the “Earliest” button in the Time Tab of the 3D View.

7.1.2 Using the Baron: Displaying Raw Metric Values

Figure 23: Raw metric values on the physical display pane.

To display raw metric values in the physical display:

1. Click on “node” in the left hand menu to see the available metrics for display for the node.

56



2. Drag and drop a metric onto the display, such as CPU1 Temp.

The nodes should become colored by value as shown in Figure 23. The range of the values in

the color bar is determined by the min and max metric values exhibited at the time in the display,

unless overridden by settings in the Color tab (described in §6.5).

7.1.3 Using the Baron: Performing Analyses and Displaying Model Comparisons in the

Physical Display

With the analysis capabilities, you can build a model of data and determine outliers relative to that

model, presented both textually and in the physical display. The analyses and model drops in this

section are those in Figure 22.

Click on Analysis in the upper left of the window and a Descriptive Analysis pane should appear.

The default time range is the entire time range in the database. Do the following:

1. Drag and drop the metric 3p3V onto the analysis metric window .

2. For the components entry, fill in “node1-300”. Components can be specified by either their

canonical names or their component type and number (as they are in this case). If they are

specified by canonical names, note that ranges are not supported as canonical names can

have hyphens within them.

3. Click on Learn

Analysis results should appear as in Figure 24 (left).

To determine outliers relative to the results of the Descriptive Analysis:

1. Click on the Monitor tab in the same pane. Note that the results of the learn analysis have

populated the monitor options. By default, the outlier threshold has been chosen to be 2

standard deviations. You may change any of these values, but for this example keep them as

is.

2. Click on the Monitor button

Analysis results should appear as in Figure 24 (right). In the result window will be a list of compo-

nents which satisfy the outlier criteria at any time during the time range as well as at least a partial

list of details of the outliers, including component, time, and metric value.

After an analysis, outliers can also be displayed in the physical display, by dragging and dropping

the analysis onto the physical display (Grab where it says “Haruspex submitted successfully”).

Supported drops are

57



Figure 24: Descriptive learn (left) and monitor (right) Analyses panes.

58



• Descriptive Monitor - colors everything below the threshold red, above blue, and in between

green.

• MultiCorrelative Learn - colors on a scale from red to blue everything by its significance

level.

• MultiCorrelative Monitor - colors red everything with significance level below the threshold,

green everything above the level.

Additionally, outliers will pop out of the physical display if the analysis is also dragged to the

component list window.

Figure 25: Descriptive monitorModel drop

This first is shown in Figure 25. Note that depending on the time chosen, components may pop

out that are not colored as outliers at that time, as outliers at any one time may not be outliers at

all times. The Multicorrelative drops will be illustrated below after the Multicorrelative analysis is

illustrated. (The analysis and model drop are the leftmost column in Figure 22).

Splitting the pane (see Figure 15 in §6.2) and performing a similar descriptive analysis for 5V

proceeds similarly, with the results shown in the middle analysis and physical display column in

Figure 22. Note that for the 5V cases there are outliers both below (red) and above (blue) the mean.

Finally we illustrate a Multicorrelative analysis, using both the 3p3V and 5V metrics:

1. Drag both metrics to a new analysis pane

59



Figure 26: Multicorrelative learn (left) and monitor (right) Analyses panes.

60



Figure 27: Evinced data compared to the calculated model for the Multicor-

relative Analysis on the two metric previously studied as single metrics in the

Descriptive Analyses.

2. Click on Learn

The resultant pane is shown in Figure 26 (left).

This analysis can then be dragged to the physical pane as shown in Figure 28 (top). In the physical

pane model comparison, data for that time is compared to the model and colored according to

significance level. Figure 27 shows the model surface calculated in this case with evinced data

(over the entire time range) indicated on the plot. (This is not a figure that you can generate with

OVIS via the Baron).

The Multicorrelative Monitor analysis determines probabilistic outliers given a user specified sig-

nificance level:

1. Select the Monitor option on the previous Multicorrelative analysis pane. This populates the

analysis with the model values recently calculated.

2. Change the probabilistic threshold to 0.003

3. Click on Monitor

Results are shown in Figure 26 on the right. Note that there is only one node exhibiting outlier

behavior in the multicorrelative analysis, as compared to the two single variable analyses. The

analysis can be dragged to the physical pane as shown in Figure 28 (bottom). (This analysis and

model drop are the rightmost column in Figure 22). We have further dropped the analysis on the

component selection which pops out the the node exhibiting outlier behavior in the multicorrelative

analysis. It is easily seen in the physical view that the outlier node in the multicorrelative analysis

is not an outlier in the 3p3V metric at the time shown and that outliers in one of the metrics do not

necessarily exhibit outlier behaviors in the correlation analysis.

Analyses such as these can be used not only to determine outliers but to determine variable de-

pendencies. This information, when combined with event data, such as, for example, node failure

61



Figure 28: Multicorrelative Learn Analysis dropped onto the physical layout (top) and

Monitor Analysis drop (bottom). Nodes are colored by significance level in the Learn

drop. Nodes are colored green/red relative to the probabilistic threshold in the Monitor

drop. Note that outliers in the Multicorrelative Analysis are not necessarily outliers in the

single metric Descriptive Analysis and vice versa (only 1 outlier in the Monitor drop).

62



data, can be used to determine if outliers in a metric or a combination of metrics can be used as

advanced indicators of the event of interest.

7.1.4 Using the Baron: Playing Through Time in the Physical Display

The Baron also supports playing data through time. Details can be found in §6.8. For this example,

in the Time tab shown in Figure 20:

1. set the Playback time to be the initial time given in the analysis window

2. click on Show time widget

3. set 1xRealtime

In the physical display you should see the time animation of the data. Colors shown indicate the

data value at the time currently shown on the clock and the clock should be changing with time.

7.2 Localhost Demo Files

This section describes two example cases which can be used on your local machine. They further

illustrate use of local and remote samplers for core utilization information, as described id §4.3.1.

7.2.1 Node level display

This case collects data from your local machine for analysis and display. In the OVIS source data

directory is the file testone.ovdbwhich is an OVIS configuration file that can be modified to test

collecting and displaying data with OVIS. For example purposes the display shows 3 racks, 2 of

which have two nodes each. Only one of the nodes will be used in this example and will collect

data from your local machine. The physical display is shown in 29 (top) with the real component

upon which data will be displayed popped out in the figure.

To use the localhost demo example:

1. Review the samplers to ensure that the metrics are correct for your system

2. Edit the addresses section of testone.ovdbwhere it is indicated to replace the data in the

lines with that corresponding to your local IP address and MAC address

3. mysql> create database OVIS_Testone

4. cd /path/to/ovisBuildDir

63



Figure 29: Node Level metric display (Local Sampler) from the te-

stone.ovdb file (top); Core Level metric display (Remote Sampler) from the

testonecpu.ovdb file (bottom).
64



5. ./bin/ovis-db -d -t 16383 -u mysql://ovis@localhost/OVIS_Testone

-x /path/to/ovisSrcDir/data/testone.ovdb

(this will set up the correct tables in your database)

6. In a different window but the same directory run

./bin/shepherd --name=Testone \

--database=mysql://ovis@localhost/OVIS_Testone

7. In a different window but the same directory run

./bin/sheep --name=Testone

8. In a different window but the same directory run

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/path/to/ovisBuildDir/lib

./bin/baron

7.2.2 Core level display

This case has 1 rack with one node which contains 4 CPUs each of which has 4 cores as shown

in 29 (bottom). This illustrates both containment of components and the use of remote samplers.

You can use this file in a manner similar to the previous example, but it will only be meaningful if

you have a multicore machine.

This case illustrates use of the ovMetricLinuxProcStatUtilRemoteSamplerwhich runs on the

node and collecting data either to be displayed on the node (e.g., the overall utilization) or on

the cores (e.g., the per core utilization). This is in contrast to the previous example where the

ovMetricLinuxProcStatUtilSamplerwas used to collect the same information to be drawn to

the node level only. Note that in the Node Level display example the per core metrics must all

have unique names per core (e.g., CPU0UserPercUtil, CPU1UserPercUtil), where as on the Core

Level display, they do not, as they are uniquely identified by the core. Note also that the Remote

case requires the use of the metric node map as described in §4.3. More information on the

specification of local and remote samplers for these examples is given is §4.3.1.

65



66



8 Additional Notes and Future Work

This section presents some additional notes and some planned enhancements.

8.1 Miscellany

Currently under development are enhancements to OVIS for handling job information including

the display of jobs and idle times on the nodes and analyses invoked upon job ids. This feature will

be incorporated in a future release.

Time series analyses will be included in a future release.

The Repeat Analysis capability (see §6.7) will be included in a future release.

Graphing/plotting capabilities will be included in a future release.

The Bayesian Modeling Analysis, referred to at ovis.ca.sandia.gov is not part of the release,

and a patent application has been applied for on this part of the OVIS work.

OVIS is released open source under BSD license, which allows for the development of plat-

form specific samplers or enhancements to OVIS to be kept for private usage. Please contact

ovis-help@sandia.gov for more information.

8.2 Multiple Shepherds

The initial release of OVIS 2.0 supports a single database back-end.

Database insertion and analysis on a fully replicated database back-end (e.g. MySQLCluster) may

work, but we have been unsatisfied with the performance of such databases in this application

and consider this option to be an unsupported feature. In this configuration, multiple shepherds

can be started and sheep attach themselves to a random shepherd from those that advertise. Each

sheep then inserts data into its selected shepherd’s database and the clustered database performs

cluster-wide replication of the data upon insertion. Each instance of a shepherd inserts an entry in

the HaruspexIds table (see §4.2.1) upon startup (and removes it when shutting down). When a

haruspex request is made, the HaruspexIds table is used by each shepherd to determine its rank

and the total number of participants; since the table is replicated, it contains a list of all available

shepherds which can participate in analysis. Each shepherd then performs its calculation on a

subset of the (replicated) metric data available to it. The metric data is partitioned by assigning

equal fractions of components in the request to each shepherd.

We have begun development to enable distributed (non-replicated) database back-ends. Unlike the

clustered database scenario, when sheep insert their values into any one of several shepherds no

replication is performed. The HaruspexIds table is ignored in this case since shepherds perform

67



the analysis using all metric data available to them, as opposed to a subset computed from a rank

and number of participants. The haruspex request and result data is replicated by OVIS using

database triggers to detect insertions and updates followed by socket serialization of the rows in

question. You can see our progress by preparing a build with the DISJOINT DATABASE BACKEND

set to ON. This is for demonstration only; we do not support it. Only the descriptive and correlative

haruspices have their request and result data replicated at this time. It will require an additional

exception in your firewall for traffic to replicate rows.

Distributed databases will be supported in a future release.

68



References

[1] J. Brandt, B. Debusschere, A. Gentile, J. Mayo, P. Pébay, D. Thompson, and M. Wong. OVIS

2: A robust distributed architecture for scalable RAS. In Proc. 22nd IEEE International Par-

allel & Distributed Processing Symposium (4th Workshop on System Management Techniques,

Processes, and Services), Miami, FL, April 2008.

[2] J. Brandt, B. Debusschere, A. Gentile, J. Mayo, P. Pébay, D. Thompson, and M. Wong. Us-

ing probabilistic characterization to reduce runtime faults on hpc systems. In Workshop on

Resiliency in High-Performance Computing, Lyon, France, May 2008.

[3] J. Brandt, A. Gentile, J. Mayo, P. Pébay, D. Roe, D. Thompson, and M. Wong. Resource

monitoring and management with ovis to enable hpc in cloud computing. In Proc. 23rd IEEE

International Parallel & Distributed Processing Symposium (5th Workshop on System Man-

agement Techniques, Processes, and Services), Rome, Italy, May 2009.

[4] Kitware, Inc. Visualization Tool Kit (VTK). www.vtk.org.

[5] Sandia National Laboratories. OVIS. ovis.ca.sandia.gov.

[6] TERASCALA. Terascala performance notes. www.terascala.com/pdf/Terascala

Performance Notes.pdf. last accessed 2009-04-13.

69


